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WARNING: 

Please be aware that some example images are 
shown that may cause seizures in individuals with 
pattern sensitive epilepsy, and visual discomfort in 

others.  Do not proceed with viewing this 
presentation if these are a concern for you.

This applies to slides/pages 32 and 37 



Brains are intricate networks of vast numbers of 
neurons

• Brains are highly inhomogeneous, densely 
interconnected networks of electrically active neurons 


• Mammalian brains have 

• anywhere from  (naked mole rat) to as 

many as  neurons (African elephant)

• ~100 to 1,000 different neuronal types

• dozens of distinct anatomical regions


• which can themselves have subareas


• Each individual neuron is in turn comprised of many 
different components and connects to ~1,000 to 
10,000 other neurons


• How do we begin to model, let alone understand, 
such systems?

∼ 3 × 107

∼ 3 × 1011



How experimentalists look at neurons

How theorists look at neurons

Abbott, 1999

Do we really need all of this complexity?
One way: pretend the brain is in fact 
homogeneous with very simple neurons and 
see how far you can go!



• 18th cent: Galvani and his wife 
observed that frog’s legs contracted 
when stimulated by electricity (led to 
the first battery by Volta and to 
Frankenstein by Shelley!)


• 19th cent: discovery of cells, voltage 
across cell membrane, action 
potential (speed determined by von 
Helmholtz, who also studied vision) 

Neurons communicate via 
propagating electrical signals



Initial neuronal models included dynamic circuit and 
static feedforward models

• 1907: first circuit model of action 
potentials by Lapicque


• 1943: first model of neuronal 
computations by McCullough and 
Pitts 

τV(t) = − V(t) + I(t)

Abbott, 1999
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• 1907: first circuit model of action 
potentials by Lapicque


• 1943: first model of neuronal 
computations by McCullough and Pitts 


• 1952: Hodgkin-Huxley model (1963: 
Nobel)

• Much more accurate model of action 

potential

• Sodium and potassium conductances 

modeled through nonlinear equations

• System of 4 ODEs

Initial neuronal models included dynamic circuit and 
static feedforward models



τV(t) = − V(t) + I(t)

Abbott, 1999

C
dV
dt

= I − gNam3h(V − ENa) − gKn4(V − EK) − gL(V − EL)

dm
dt

= am(V )(1 − m) − bm(V )m

dh
dt

= ah(V )(1 − h) − bh(V )h

dn
dt

= an(V )(1 − n) − bn(V )n

am(V ) = 0.1(V + 40)/(1 − exp( − (V + 40)/10))
bm(V ) = 4 exp( − (V + 65)/18)
ah(V ) = 0.07 exp( − (V + 65)/20)
bh(V ) = 1/(1 + exp( − (V + 35)/10))
an(V ) = 0.01(V + 55)/(1 − exp( − (V + 55)/10))
bn(V ) = 0.125 exp( − (V + 65)/80)

Hodgkin-Huxley equations

Initial neuronal models included dynamic circuit and 
static feedforward models



Mean-field models allow for tractable equations 
that capture large-scale dynamics

• 1907: first circuit model of action 
potentials by Lapicque


• 1943: first model of neuronal 
computations by McCullough and Pitts 


• 1952: Hodgkin-Huxley model (1963: 
Nobel)


• 1956: Neural fields by Beurle


• 1972, 1973: Wilson-Cowan 
equations include inhibition

τV(t) = − V(t) + I(t)
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u - excitatory

v - inhibitory

Neural field models approximate cortex as a 
continuum of neurons



u - excitatory

v - inhibitory

∂u(x, t)
∂t

= − u(x, t) + fe(Jee(x) * u(x, t) − Jei(x) * v(x, t))

τ
∂v(x, t)

∂t
= − v(x, t) + fi(Jie(x) * u(x, t) − Jii(x) * v(x, t))

fe,i(u) =
1

1 + exp(−4(u − θe,i))

Jαβ(x) = aαβKβ(x)

 - spatial convolution*

Neural field models approximate cortex as a 
continuum of neurons



But… what about those static 

feedforward models?

τV(t) = − V(t) + I(t)

Abbott, 1999

Y ∈ {0,1}

W1 = W2 = W3 = . . . = WN

f(x) = Heav(x)

(fixed)

• 1943: McCullough-Pitts model


• 1949: Hebbian learning - synaptic 
weights change to allow for learning


• 1958: perceptron by Rosenblatt


• Mark I perceptron machine 
(compare: Blue/Human Brain 
Project)


• 1969: Need more than one layer of 
“neurons” (XOR - Minsky and Papert)
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Multilayered (“deep”) perceptron networks prove 
more practical in applications

• 1967: Supervised learning on 
“deep” feedforward networks 
(multilayer perceptrons) by 
Ivakhnenko and Lapa
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Deep networks can be made to be much more 
biologically realistic

• Realistic?

--

Lillicrap…Akerman, 2016
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Lillicrap…Akerman, 2016

Deep networks can be made to be much more 
biologically realistic



Spatial resonance: Certain static visual 
stimuli can cause seizures and discomfort

• (A) Periodic patterns with certain 
spatial frequencies can cause epileptic 
seizures


• (B) In those without epilepsy, the same 
stimuli can cause headaches, illusions, 
and general aversion and discomfort


• (C) More complicated images 
composed of many wavenumbers can 
also cause discomfort

Fernandez & Wilkins, 2008

C

A

B



Oscillatory patterns are observed 
in response to the stimuli

If you have a visual epilepsy, please look 
away for the next slide, as an example 

stimulus will  be shown



Oscillatory patterns are observed 
in response to the stimuli

• Screen doors, copper mesh, corduroy 
could all trigger epileptiform activity

Bickford & Keith, 19531

1 2

• Striped patterns, such as sine- and 
square-wave gratings trigger such seizures



Oscillatory patterns are observed 
in response to the stimuli

• Similar oscillatory activity observed in the 
case of visual discomfort

1 2

• Spatial frequencies esp. near 2-4 cpd 
induce the seizures

A

Bickford & Keith, 19531
Fernandez & Wilkins, 20082

2



Oscillatory patterns are observed 
in response to the stimuli

• Similar oscillatory activity observed in the 
case of visual discomfort

1 2

• Spatial frequencies esp. near 2-4 cpd 
induce the seizures

Bickford & Keith, 19531
Fernandez & Wilkins, 20082

• Large-scale activity 
suggests a mean-field 
approach




Neural fields provide a natural starting point
• Large-scale dynamic activity suggests a population-level mean-field 

approach such as neural fields
∂u(x, t)

∂t
= − u(x, t) + fe(Jee(x) * u(x, t) − Jei(x) * v(x, t))

τ
∂v(x, t)

∂t
= − v(x, t) + fi(Jie(x) * u(x, t) − Jii(x) * v(x, t))

u - excitatory 
v - inhibitory

fe,i(u) =
1

1 + exp(−4(u − θe,i))
Jαβ(x) = aαβKβ(x)



Neural fields provide a natural starting point
• Large-scale dynamic activity suggests a population-level mean-field 

approach such as neural fields
∂u(x, t)

∂t
= − u(x, t) + fe(Jee(x) * u(x, t) − Jei(x) * v(x, t) + q S(x; k))

τ
∂v(x, t)

∂t
= − v(x, t) + fi(Jie(x) * u(x, t) − Jii(x) * v(x, t) + q ⋅ r S(x; k))

aii

u

v

aee

aie aei

S(x; k)
q

q r

q

q r

S(x; k)

u - excitatory 
v - inhibitory

S(x; k) = cos ( 2πkx
N )



Neural fields provide a natural starting point
• Large-scale dynamic activity suggests a population-level mean-field 

approach such as neural fields
∂u(x, t)

∂t
= − u(x, t) + fe(Jee(x) * u(x, t) − Jei(x) * v(x, t) + q S(x; k))

τ
∂v(x, t)

∂t
= − v(x, t) + fi(Jie(x) * u(x, t) − Jii(x) * v(x, t) + q ⋅ r S(x; k))

aii

u

v

aee

aie aei

S(x; k)
q

q r

q

q r

u - excitatory 
v - inhibitory



Resonant oscillations suggest Turing-Hopf 
bifurcation

• Hopf bifurcation: changing a 
parameter results in the appearance of 
oscillations


• By adjusting the spatial profiles of the 
Gaussian kernel, the steady state of 
the system can be lost to oscillations 
with at a nonzero wavenumber, m* 
(Turing-Hopf bifurcation)


• Then, presumably, the system will be 
more sensitive to stimuli with those 
wavenumbers

aee*

eea

eea*

pattern
formation=

steady state stable



Resonant oscillations suggest Turing-Hopf 
bifurcation

• Hopf bifurcation: changing a parameter 
results in the appearance of oscillations


• By adjusting the spatial profiles of the 
Gaussian kernel, the steady state of the 
system can be lost to oscillations with 
at a nonzero wavenumber,  (Turing-
Hopf bifurcation)


• Then, presumably, the system will be 
more sensitive to stimuli with those 
wavenumbers

m*

aee*

q=0

eea

eea*
pattern

formation
pattern

formation

m*

=

steady state stable

For k=



Resonant oscillations suggest Turing-Hopf 
bifurcation

• Linearize system, look for solutions that are periodic in 
space and time ( )


• End up with simple 2x2 linear system that will be a 
function of the wavenumber 


• Find when the eigenvalue is purely imaginary only at a 
nonzero wavenumber 


• Since eigenvalues are given by  
( ), sufficient if 


•  at  and negative elsewhere


•  everywhere


• Then 

u, v ∼ eiμteimx

m

m*

λ = T ± T2 − 4D
T = Trace, D = Det

T = 0 m = m*

D > 0

λ = iμ at m*

aee*

q=0

eea

eea*
pattern

formation
pattern

formation

m*

=

steady state stable

For k=



Resonant oscillations suggest Turing-Hopf 
bifurcation
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Imaginary eigenvalues
m*:

Destabilize at this mode
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Poor-person’s bifurcation diagram: simulate 
over a q, k range and probe variance
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3T/4

No patterns

Poor-person’s bifurcation diagram: simulate 
over a q, k range and probe variance



Inverting lower boundary to find sensitivity of network to different 
wavenumbers results in similar resonance as in experiments
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1-dimensional ModelNeural field model in 1 spatial dimension easier to analyze 
and produces a large subset of spatiotemporal dymnamics
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1-D: Similar Sensitivity
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In 1D, we obtain similar resonance / sensitivity 
as with 2-D model
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1-D: Pattern Formation
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We generally obtain standing-wave patterns in 1D 
that look similar to those obtained in 2D



1-D: Pattern Formation

5 10 150

3

6

0

q*
1___________

 

k

k=6

-0.1 0.8

aee
*

Time

Space

7e-3-6e-3 -0.1 0.8

Stimulus-free

Stimulus on

We generally obtain standing-wave patterns in 1D 
that look similar to those obtained in 2D



1-D: Pattern Formation

5 10 150

3

6

0

q*
1___________

 

k

k=6

k=5 k=10

-0.1 0.8

aee
*

Time

Space

7e-3-6e-3 -0.1 0.8

Stimulus-free

Stimulus on

We generally obtain standing-wave patterns in 1D 
that look similar to those obtained in 2D



1-D: Pattern Formation

5 10 150

3

6

0

q*
1___________

 

k

k=6

k=5 k=10

-0.1 0.8

aee
*

Time

Space

7e-3-6e-3 -0.1 0.8

5 10 15 20

0.10

0

0.10

0.20

Determinant
Trace

=m
Stable mStable m

Imaginary eigenvalues
m*:

Destabilize at this mode

Natural spatial frequency = 5, resonant spatial 
frequency = 10 due to alternating pattern
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In 1D, we can explore further by producing 2-parameter 
bifurcation diagrams near the dynamic instability
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Since k=10 curve is linear, fits within quadratic curves. 
Hence, more sensitive near onset to k=10



Summary

I Spatial resonances: oscillatory neural responses to static
images with dominant frequencies in a narrow band

I Spatially extended neural field model captures resonance when
placed near Turing-Hopf bifurcation

I 2-D and 1-D networks show similar behaviors
I Both: resonances near those found psychophysically

I Mathematically show that network more sensitive to stimuli
with twice the natural frequency

Pattern formation summary



Does the visual system implement a deep 
network?

One class of deep network models that the 
brain is hypothesized to implement are 
predictive hierarchical models

- Dayan … Zemel, Neur. Comp., 1995

 - Rao & Ballard, Nat. Neur., 1999

1

2

Helmholtz machine schematic1

doi: https://doi.org/10.1101/2021.01.15.426915

Preprint:



Does the visual system implement a predictive 
hierarchical model of the world?

• Predictive hierarchical models (e.g., Helmholtz machines , 

Rao & Ballard ) comprise a broad class of models of how 
the visual system is hypothesized to function.  Briefly:


• Higher brain areas make predictions about incoming 
stimuli based on prior experience (possibly evolutionary)


• These predictions are compared to the incoming stimuli


• The predictions, comprising the internal model of the 
world, are updated based on these comparisons


• i.e., differences between predictions and stimuli drive 
learning

1
2

- Dayan … Zemel, Neur. Comp., 1995

 - Rao & Ballard, Nat. Neur., 1999

1

2

Helmholtz machine schematic1



1. There should be distinct responses to 
expected and unexpected stimuli 


2. These responses should change with 
experience


3. Top-down and bottom-up responses should 
evolve differently due to hierarchical 
structure


4. Unexpected responses should predict 
how they evolve in time in indiv. neurons

Does the visual system implement a predictive 
hierarchical model of the world?

Logical consequents of such predictive  
hierarchical models:

- Dayan … Zemel, Neur. Comp., 19951

Helmholtz machine schematic1



Seed mouse with expectations and observe responses 
to expectation violations over multiple days

• Habituate mice to A-B-C-D 
Gabor-patch sequences 

• Then substitute ~8% of D frames  
with unexpected U Gabor-patch 
frames (diff. positions and 
orientations than D)


• Image 2-photon calcium activity 
over 3 recording days


• Segment and match ROIs to 
follow activity over different days

• Distal apical dendrites (top-

down signals) and somata 
(bottom-up signals)


• Error signals?  Matching 
signals?

Days

20
0 
�m

L5-Dendrites

L5-Somata

1 2 3H6 H7 H8 H9 H10 H11H1 H2 H3 H4 H5

Habituation to recording
rig without stimulus

Habituation with expected
sequences (no U frames)

Optical imaging
with full stimulus
(incl. U frames)

Experimental timeline (in days)

A

B

C

gr

D or U



(1) Are there distinct responses to expected and 
unexpected stimul?

USI =
µUG � µDGq
1
2 (�

2
UG + �2

DG)
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Unexpected event Selectivity Index

(measure of sensitivity to U frames)

Take-home: Many more USIs are sensitive ( ) to 
unexpected vs. expected events than predicted by chance,  
demonstrating distinct responses
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(2) Do they change with experience?
(3) Do bottom-up and top-down representations 

evolve differently?

Take-home: Dendritic (top-down) responses increase with 

experience over days, while somatic (bottom-up) 
responses decrease
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(4) Do the unexpected responses predict how they 
evolve in time?

USI =
µUG � µDGq
1
2 (�

2
UG + �2

DG)
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Individual ROI USI evolution

(each line corresponds to 1 tracked ROI)

Examine correlation between 
USIs on 1 day and the change 
in value on the next day
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(4) Do the unexpected responses predict how they 
evolve in time?

Take-homes: 

• Somatic USIs decrease as a function of their 

USIs (statistically significantly) from day 1 to 2, 
consistent with a reduction in error.  


• Dendrittic USIs increase as a function of their 
USIs (statistically significantly) from day 2 to 3, 
becoming more sensitive to unexpected stimuli

USI =
µUG � µDGq
1
2 (�

2
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 Predictive Hierarchical 
Network Summary

1. Violations of expectation are observable in neural 
activity in very early layers (predictions)


2. The sensitivity to violations changes over days 
(learning of novel stimuli)


3. Bottom-up and top-down signals evolve differently 
(hierarchical learning model)


4. Furthermore, the sensitivities specifically guide the 
evolution of responses in individual neurons (specific 
differences in responses may drive learning)


• Overall, visual cortex may instantiate a predictive 
hierarchical model that is updated as a result of 
unexpected events
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