York University Department of Physics and Astronomy Colloquium, 17 November 2020

DARK MATTER INTERACTIONS THROUGHOUT COSMIC HISTORY

Kimberly Boddy University of Texas at Austin

Role of standard dark matter \diamond

Effects of dark matter physics in cosmology

Tests of dark matter scattering

Future prospects

Role of standard dark matter \diamond

Effects of dark matter physics in cosmology

Tests of dark matter scattering

Future prospects

z ~ 10⁹

Cosmic Microwave Background

Dark matter in ΛCDM: cold, collisionless

Acoustic Oscillations

simple harmonic oscillators of various frequency and wavelength (Fourier-space description)

Role of standard dark matter

Effects of dark matter physics in cosmology

Tests of dark matter scattering

Future prospects

Weakly Interacting Massive Particle (WIMP) Searches

Spectral Distortions of CMB Blackbody

Suppression of CMB Anisotropies

DM annihilation

suppression across (mostly) all scales

DM-baryon scattering

suppression at small scales

Effects of annihilation and scattering are distinguishable

Li, Gluscevic, KB, Madhavacheril (PRD 2018)

Annihilation and Decay Constraints

Poulin, Lesgourgues, Serpico (JCAP 2017)

Role of standard dark matter

Effects of dark matter physics in cosmology

Tests of dark matter scattering

Future prospects

Kimberly Boddy

12

Small-Scale Suppression

Interactions can destroy small, weakly-bound structures

Test with CMB

Parameterize scattering: $\sigma_{MT}(v) = \sigma_0 v^n$ Relates to: EFT formalism in direct detection
Very light mediator models
Thermal dispersion Thermal dispersion $v_{\rm th} = \sqrt{\frac{T_b}{m_b}} + \frac{T_{\rm DM}}{m_{\rm DM}}$ Relative bulk velocity $\vec{V} = \vec{V}_h - \vec{V}_{\rm DM}$

for n≥0: **KB**, Gluscevic (PRD 2018) and Gluscevic, **KB** (PRL 2018) for n<0: **KB**, Gluscevic, Poulin, Kovetz, Kamionkowski, Barkana (PRD 2018)

KB, Gluscevic (PRD 2018)

KB, Gluscevic, Poulin, Kovetz, Kamionkowski, Barkana (PRD 2018)

implications for EDGES, see Kovetz, Poulin, Gluscevic, **KB**, Barkana, Kamionkowski (PRD 2018)

Small-Scale Suppression

Very small galaxies might not form

Test with galaxy surveys

Interactions can destroy small, weakly-bound structures

Test with CMB

Moore+ (MNRAS, 1999)

Matter Power Spectrum

KB and Gluscevic (PRD 2018)

Milky Way Satellites

Classic dwarfs SDSS-identified dwarfs

Constraints with SDSS + Classical

Kimberly Boddy

19

Constraints with DES + Pan-STARRS1

Kimberly Boddy

DES Collaboration, incl. KB (2008.00022)

Constraining Velocity-Dependent Models

Maamari, Gluscevic, KB, Nadler, Wechsler (in prep)

Preliminary Results

Maamari, Gluscevic, KB, Nadler, Wechsler (in prep)

Role of standard dark matter

Effects of dark matter physics in cosmology

Tests of dark matter scattering

Future prospects

Kimberly Boddy

23

CMB Experiments

South Pole Telescope

Simons Observatory CMB-S4

PICO, CMB-HD

Galaxy Surveys

LSST DM white paper 1902.01055

Kimberly Boddy

See also: DESI, WFIRST, Euclid, ...

Cosmological and astrophysical observables provide a unique and rich foundation to address the long-standing dark matter problem.

CMB experiments

BBN abundance measurements

21cm global signal and power spectrum

Ly-alpha

galaxy surveys

