Enlightening the dark Direct dark matter searches with XENON

Teresa Marrodán Undagoitia marrodan@mpi-hd.mpg.de

Physics colloquium at York University, Toronto October 2020

Looking at our Universe ...

... dynamics do not behave as expected

Vera Rubin, undergraduate at Vassar 1940s (brainpickings.org)

Looking at our Universe ...

... dynamics do not behave as expected

Cosmological and astronomical hints

- Cosmic microwave background
- Large scale structure-formation
- Velocity dispersion of galaxies in clusters (F. Zwicky 1933)
- Rotation velocities of stars in galaxies (V. Rubin 1978)
- Gravitational lensing (A. Einstein 1936)
- Collisions of galaxy clusters (Bullet cluster, Abell 520 and few others)

What is dark matter?

Early solutions to the missing mass problem:

- Modified gravitational theories e.g. MOND (Milgrom 1983)
 - \rightarrow fail/need unrealistic parameters for some observables (e.g. CMB)
- Massive astrophysical compact halo objects: MACHOS
 - → not enough such objects found (MACHO Coll. 2001)
 - \rightarrow Disfavoured by Big Bang nucleosynthesis

Primordial black holes as an option

A new elementary particle?

- Massive → explain gravitational effects
- Neutral \rightarrow no EM interaction & Weakly interacting at most
- Stable or long-lived → not to have decayed by now
- Cold (moving non-relativistically) or warm \rightarrow structure formation

Millenium simulation

In the standard model of particle physics: **Neutrino** fulfil most but it is a hot dark matter candidate

Well motivated theoretical approach:

WIMP

(Weakly Interacting Massive Particle)

A new particle?

How can we look for dark matter?

Indirect detection

Direct detection

Production at LHC

 $\chi \overline{\chi} \to \gamma \gamma, q \overline{q}, \dots$

 $\chi N \rightarrow \chi N$

$$p + p \rightarrow \chi \overline{\chi} + X$$

Direct dark matter detection

 $E_{\rm R} \sim \mathcal{O}(10\,{\rm keV})$

Expected interaction rates in a detector

$$\frac{dR}{dE}(E,t) = \frac{\rho_0}{m_{\chi} \cdot m_A} \cdot \int \mathbf{v} \cdot f(\mathbf{v},t) \cdot \frac{d\sigma}{dE}(E,\mathbf{v}) \, \mathrm{d}^3 \mathbf{v}$$

Astrophysical parameters:

- $\rho_0 =$ local density of the dark matter in the Milky Way 'Standard' value: $\rho_{\chi} \simeq 0.3 \,\text{GeV/cm}^3$
- $f(\mathbf{v}, t) = WIMP$ velocity distribution, $\langle v \rangle \sim 220 \text{ km/s}$

Parameters of interest:

- *m*_χ = WIMP mass (~ 100 GeV)
- σ = WIMP-nucleus elastic scattering cross section (SD or SI)

Figure from NASA

Detector requirements

- Requirements for a dark matter detector
 - Large detector mass
 - Low energy threshold ~ few keV's
 - Very low background
 - Technology or analysis tools to discriminate signal and background

J. Phys. G: 43 (2016) 1, & arXiv:1509.08767

Result of a direct detection experiment

→ Statistical significance of signal over expected background?

Positive signal

• Region in σ_{χ} versus m_{χ}

• Zero signal

- Exclusion of a parameter region
- Low WIMP masses: detector threshold matters
- o Minimum of the curve: depends on target nuclei
- o High WIMP masses: exposure matters $\epsilon = m \times t$

Overview spin-independent results

Figure from P.A. Zyla et al. (PDG), Prog. Theor. Exp. Phys. 2020 (2020) 083C01

Direct detection experiments

J. Phys. G: 43 (2016) 1 & arXiv:1509.08767

Teresa Marrodán Undagoitia (MPIK)	XENON1T	October 2020 14 / 48
-----------------------------------	---------	----------------------

Liquid xenon as detector

- Cryogenic liquid typically operated at 2 bar and -100°C
- High density: 3 g/cm³
- High scintillation and ionization yields
- Employed in particle-, neutrino-, dark matter- and medical physics

Two phase noble-gas TPC

Position resolution to define the innermost radiopure volume for analysis

- Scintillation signal (S1)
- Charges drift to the liquid-gas surface
- Proportional signal (S2)
- → Electron- /nuclear recoil discrimination

Teresa Marrodán Undagoitia (MPIK)

Particle identification based on S1 & S2

- ER: calibrated using a ²²⁰Rn source (β -decays of ²¹²Pb)
- NR: calibrated using a neutron generator / AmBe-neutron source

THE XENON EXPERIMENT

Teresa Marrodán Undagoitia (MPIK)

XENON collaboration

Experiment operated by ~ 160 scientists worldwide

Teresa Marrodán Undagoitia (MPIK)

XENON1T

XENONnT technical meeting with ZOOM

XENON experiment

@ Laboratori Nazionali del Gran Sasso (Italy) below 3650 m.w.e. shielding

XENON underground

XENON water tank and building @LNGS, location underground

The XENON program

Shielding against radiation

- Underground location to shield from cosmic particles
- Active water-Cherenkov muon shield
- Neutron veto for XENONnT
- Veto system instrumented with photosensors (PMTs)

Backgrounds

- External backgrounds: from natural radioactivity:
 - γ -activity and neutrons
- Neutrinos from the Sun:
 - Elastic neutrino-electron scattering of v
 - Coherent elastic neutrino-nucleus scattering (CEvNS)
- Internal contamination:
 - Xenon: ¹³⁶Xe $\beta\beta$ decay (T_{1/2} = 2.3 × 10²¹ y)
 - ⁸⁵Kr: from ^{nat}Kr in Xe in the xenon inventory
 - Rn: dominant contribution to the background

Background reduction @MPIK

Scheme GeMPI detector

Giove @ MPIK

RGMS for Kr measurements

Radon measuring system

- High sensitive HPGe spectrometers
- GeMPIs detectors at LGNS (Italy) with ~ 10 $\mu\text{Bq/kg}$ sensitivity in U & Th
- 3 additional spectrometers at MPIK shallow lab
- Measurement of Kr concentration with a rare-gas mass spectrometer
- Sensitivity of 6 ppq Lindemann & Simgen, Eur. Phys. J. C 74 (2014) 2746
- Radon emanation and radon measuring systems
- Automatized emanation setup

XENON1T WIMP searches

Figure from XENON1T, PRL 121, 111302 (2018) & arXiv:1805.12562

Science run 1 data from XENON1T

no significant signal \rightarrow exclusion limit derived

Teresa Marrodán Undagoitia (MPIK)

XENON1T

Latest dark matter results

XENON1T, PRL 121 (2018) 111302, PRL 123 (2019) 251801 & PRL 123 (2019) 241803

BEYOND WIMP SEARCHES

Teresa Marrodán Undagoitia (MPIK)

Multi-physics goals in large liquid xenon detectors

Teresa Marrodán Undagoitia (MPIK)

XENON1T

¹²⁴Xe double-electron capture

From XENON1T, Nature 568 (2019) 7753, 532

Measured half-life:

 $T_{1/2}^{2\nu \rm ECEC} = \left(1.8 \pm 0.5_{stat} \pm 0.1_{sys}\right) \times 10^{22} \, y$

→ longest directly measured half-life

Focussing on electronic recoils

Data from XENON1T, Phys. Rev. Lett. 121 (2018) 111302 & arXiv:1805.12562

- WIMP search: in the NR region with almost zero background
- ER searches: excess events above a known background level

Low energy excess

XENON1T, Phys. Rev. D 102 (2020) 072004 & arXiv: 2006.09721

Excess between (1-7) keV

- 285 events observed vs. 232 events expected from best-fit
- 3.3 σ fluctuation \rightarrow naive estimation (we actually use a likelihood)
- Great resonance in the community (> 140 citations since June)

Collage of different models trying to explain the excess by ParticleBites

A new background?

- Tritium favoured over background-only at 3.2 σ
 - Tiny concentration (< 3 atoms per kg of xenon)
 - Unclear origin → cosmogenic activation and from natural abundance unlikely
- ³⁷Ar: argon in xenon is strongly reduced by cryogenic distillation
 - Leak hypothesis or in-situ production ruled out

A signal of new physics?

• Solar axion hypothesis favoured over background-only at 3.4 σ

- In strong tension with astrophysical constrains from stellar cooling (see for instance arXiv:2003.01100)
- Neutrino magnetic moment favoured at 3.2 σ
 - Magnetic moment: $\mu_{\nu} \in (1.4, 2.9) \times 10^{-11} \mu_B$ at 90% CL
 - In tension with astrophysical constraints (arXiv:1910.10568 & arXiv:1907.00115)

XENONnT

TPC installed underground

- XENONnT is coming soon!!!
- Able to discriminate axions from tritium with ~ few months of data

XENONnT

• Aim to measure WIMPs soon ©

- → Figure from XENON1T, (2020) arXiv:2007.08796
- Commissioning of subsystems being finalized
- Expecting to start data taking this year

PRELIMINARY: XENONnT S1 waveform in xenon gas

XENONnT impressions

XENONnT impressions

DARWIN: the ultimate WIMP detector

http: //darwin-observatory.org/

- R&D and design study for a large liquid xenon dark matter detector
- TPC of ~ 2.6 m Ø
 & 2.6 m drift length
- 50 t LXe total (40 t in the TPC)

DARWIN, JCAP 1611 (2016) 017

- Vertical and horizontal demonstrators at UZH and U Freiburg, respectively
- Various R&D activities on alternative photosensors ongoing
- MPIK: developing radon reduction measures

Teresa Marrodán Undagoitia (MPIK)

Sensitivity of upcoming liquid xenon detectors

DARWIN: a large observatory for astroparticle physics:

 \rightarrow Neutrinoless double-beta decay, solar/SN neutrinos, rare processes ...

Summary

Sensitivity for dark matter searches has progressed rapidly

- ★ XENON1T: largest detector with lowest background rate to date
 → Best sensitivities for WIMP searches reached
- Excess of ER events at lowest energies: New background? New signal?
- XENONnT is being commissioned!
- XENONnT and DARWIN are the future devices to investigate the dark matter properties and a wide variety of neutrino physics

Sensitivity evolution and prospects

Teresa Marrodán Undagoitia (MPIK)

Other signatures of dark matter

- Annual modulation of the detector rate
- Directional dependance of the signal

DAMA experiment, R. Bernabei et al., Eur. Phys. J. C67, 39 (2010)

Cross sections for WIMP elastic scattering

• Spin-independent interactions: coupling to nuclear mass

$$\sigma_{SI} = \frac{m_N^2}{4\pi (m_\chi + m_N)^2} \cdot \left[\boldsymbol{Z} \cdot \boldsymbol{f_p} + \left(\boldsymbol{A} - \boldsymbol{Z} \right) \cdot \boldsymbol{f_n} \right]^2$$

 $f_{p,n}$: effective couplings to p and n.

• Spin-dependent interactions: coupling to nuclear spin

$$\sigma_{SD} = \frac{32}{\pi} \cdot G_F \cdot \frac{m_{\chi}^2 m_N^2}{(m_{\chi} + m_N)^2} \cdot \frac{J_N + 1}{J_N} \cdot [a_\rho \langle S_\rho \rangle + a_n \langle S_n \rangle]^2$$

 $(S_{p,n})$: expectation of the spin content of the p, n in the target nuclei $a_{p,n}$: effective couplings to p and n.

1

Lowering the energy threshold: charge-only results

- Sensitivity loss below
 ~ 6 GeV/c² DM mass
 due to S1 (light) threshold
- S2 has a larger yield
 + it is amplified
- → lower energy threshold

BUT loss of z-position (without S1, no S1-S2 time)

- → additional background
- Sensitivity extended down to $\sim 3 \, \text{GeV}/c^2$

Examples of peak searches

No global significance over 3 σ under the BG model B_0

- Axion-like particles (ALPs) are viable DM candidates
- ALPs would be absorbed in XENON1T via axio-electric effect
- Best exclusion limits for bosonic dark matter

